How to solve for the analytic solution of a recurrence relation in mathematica -


i have recurrence such following:

rsolve[{f[m, n] == f[m, n - 1] + f[m - 1, n],          f[0, n] == 1, f[m, 0] == 1},          f[m, n], {n}] 

i tried use rsolve, got error:

rsolve::deqx: supplied equations not difference equations                of given functions. 

appreciate help!

the difference equation , initial conditions difference equation

mathematica (7 , 8) not solving it... both , without initial conditions. rsolve expressions left unevaluated

in[1]:= rsolve[{f[m,n]==f[m,n-1]+f[m-1,n],f[0,n]==f[m,0]==1},f[m,n],{m,n}]         rsolve[{f[m,n]==f[m,n-1]+f[m-1,n]},f[m,n],{m,n}] out[1]= rsolve[{f[m,n]==f[-1+m,n]+f[m,-1+n],f[0,n]==f[m,0]==1},f[m,n],{m,n}] out[2]= rsolve[{f[m,n]==f[-1+m,n]+f[m,-1+n]},f[m,n],{m,n}] 

i know mathematica uses generating functional methods (probably among other things) solve such recurrences, don't know why fails in such simple case.

so let's hand.

let g(x,n) generating function f(m,n)
enter image description here

now examine sum of f(m+1,n) x^m enter image description here

now solve simple algebraic-difference equation: enter image description here

which can done rsolve

in[3]:= rsolve[g[x,n]-x g[x,n]==g[x,n-1]&&g[x,0]==1/(1-x),g[x,n],n];         simplify[%,element[n,integers]] out[4]= {{g[x,n]->(1-x)^(-1-n)}} 

now extract coefficient of x^m:

in[5]:= seriescoefficient[(1 - x)^(-1 - n), {x, 0, m}] out[5]= piecewise[{{(-1)^m*binomial[-1 - n, m], m >= 0}}, 0] 

the binomial simplified using

in[6]:= fullsimplify[(-1)^m*binomial[-n - 1, m] == binomial[m + n, m], element[{n,m}, integers]&&m>0&&n>0 ] out[6]= true 

so results!

this can checked using symbolic , numeric means

in[7]:= ff[m_,n_]:=ff[m,n]=ff[m-1,n]+ff[m,n-1]         ff[0,_]:=1;ff[_,0]:=1 in[9]:= and@@flatten[table[ff[m,n]==binomial[n+m,m],{n,0,20},{m,0,20}]] out[9]= true  in[10]:= {f[m,n]==f[m,n-1]+f[m-1,n],f[0,n]==f[m,0]==1}/.f->(binomial[#1+#2,#1]&)//fullsimplify out[10]= {true,true} 

Comments

Popular posts from this blog

python - Scipy curvefit RuntimeError:Optimal parameters not found: Number of calls to function has reached maxfev = 1000 -

binding - How can you make the color of elements of a WPF DrawingImage dynamic? -

c# - How to add a new treeview at the selected node? -